[ Matplotlib Errorbar behaviour with NaNs ]
I have some data y plotted against x with asymmetric error bars yerr (=[up, down]
). The data, y, contains some np.nan
values at the end and likewise for yerr. However, when I plot the data using matplotlib's errorbar
function, it gets this weird marker behaviour:
What could cause this? I ran a few checks and the nan values line up, meaning that they shouldn't be plotted at all!
Heres the function:
axis.errorbar(profile.R, profile.M, yerr=profile.MW, fmt='b.')
axis.set_ylim(axis.get_ylim()[::-1])
and here's some pictures:
after re-phrase: axis.errorbar(profile.R, profile.M, yerr=(profile.MW[0], profile.MW[1]), fmt='b.')
, it still produces the same plot
after re-phrase: axis.errorbar(profile.R, profile.M, yerr=(profile.MW[1], profile.MW[1]), fmt='b.')
I've also downgraded matplotlib and it still doesn't work!
But when I take the values out of their np.arrays for the last 8 elements by hand (axis.errorbar([32.9592, 34.60716, 36.33696, 38.15418, 40.06254, 42.06576, 44.16756, 46.37724],[np.nan, 28.18328608, 27.41428602, np.nan, 27.30407038, np.nan, np.nan, np.nan], yerr=[[np.nan, 1.16532339, 0.73753135, np.nan, 0.68722997, np.nan, np.nan, np.nan], [np.nan, 1.16532339, 0.73753135, np.nan, 0.68722997, np.nan, np.nan, np.nan]])
)
it works!! WTF!
Any ideas?
Thanks
Answer 1
Shouldn't be. Show us some of your data and code. Version related? I don't think so, I am on matplotlib 1.3.1
>>> import matplotlib.pyplot as plt
>>> from numpy import *
>>> x=arange(10)*1.
>>> y=random.randint(0,20,size=10)*1.
>>> plt.plot(x, y, 'o-')
>>> y[6]=np.nan
>>> y[8]=np.nan
>>> e=random.random(size=10)
>>> e[6]=np.nan
>>> e[8]=np.nan
>>> e1=random.random(size=10)
>>> e1[8]=np.nan
>>> e1[6]=np.nan
>>> e0=vstack((e,e1))
>>> plt.errorbar(x,y,yerr=e)
<Container object of 3 artists>
>>> x
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> y
array([ 12., 7., 2., 4., 16., 4., nan, 5., nan, 14.])
>>> e
array([ 0.55292182, 0.18636933, 0.4564491 , 0.74029 , 0.54939223,
0.98015167, nan, 0.08164338, nan, 0.1865567 ])
>>> e1
array([ 0.31619386, 0.06603335, 0.63795806, 0.70372424, 0.8639665 ,
0.01439499, nan, 0.73742553, nan, 0.06838048])