TAGS :Viewed: 10 - Published at: a few seconds ago

[ Optimized version of grep to match vector against vector ]

Suppose I have two vectors of characters a and b:

set.seed(123)
categ <- c("Control", "Gr", "Or", "PMT", "P450")
genes <- paste(categ, rep(1:40, each=length(categ)), sep="_")
a0 <- paste(genes, "_", rep(1:50, each=length(genes)), "_", sep="")
b0 <- paste (a0, "1", sep="")
ite <- 200
lg <- 2000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]

I want to apply the grep function in order to find the match of each value of a in b. Of course I could do:

sapply(a, grep, b)

but I wonder if there is something more efficient as I will have to run this a lot of times for much larger vectors in simulations (note that I don't want to use mclapply either as I already use it to run each iteration of my simulations):

system.time(lapply(seq(100000), function(x) sapply(a, grep, b)))
library(parallel)
system.time(mclapply(seq(100000), function(x) sapply(a, grep, b), mc.cores=8))  

Answer 1


Since you don't use regular expressions but want to find substrings in longer strings, you can use fixed = TRUE. It is much faster.

library(microbenchmark)
microbenchmark(lapply(a, grep, b),                 # original
                 lapply(paste0("^", a), grep, b),  # @flodel
                 lapply(a, grep, b, fixed = TRUE))

Unit: microseconds
                             expr     min       lq   median       uq     max neval
               lapply(a, grep, b) 112.633 114.2340 114.9390 116.0990 326.857   100
  lapply(paste0("^", a), grep, b) 119.949 121.7380 122.7425 123.9775 191.851   100
 lapply(a, grep, b, fixed = TRUE)  21.004  22.5885  23.8580  24.6110  33.608   100

Testing with longer vectors (1000 times the original length).

ar <- rep(a, 1000)
br <- rep(b, 1000)

library(microbenchmark)
microbenchmark(lapply(ar, grep, br),               # original
               lapply(paste0("^", ar), grep, br),  # @flodel
               lapply(ar, grep, br, fixed = TRUE))

Unit: seconds
                               expr       min        lq    median       uq       max neval
               lapply(ar, grep, br) 32.288139 32.564223 32.726149 32.97529 37.818299   100
  lapply(paste0("^", ar), grep, br) 24.997339 25.343401 25.531138 25.71615 28.238802   100
 lapply(ar, grep, br, fixed = TRUE)  2.461934  2.494759  2.513931  2.55375  4.194093   100

(This took quite a while...)

Answer 2


Following on my last suggestion...

The big problem with what you are asking is that, a priori, you need to do length(a) * length(b) comparisons. However, you can take advantage of the fact that the matches here will only happen at the beginning of the strings (what I gathered from the comments.).

I suggested you first split your a and b vectors into lists, after looking at the first word ( "Or", "Gr", "Control", "PMT", etc.) in each item, then only look for matches in the corresponding sets. In other words, take the items in a that start with Or_ and only look for matches in the items in b that also start with Or_.

To give you an idea of why this is efficient in terms of complexity. Imagine a and b both have length n; that there are x possible prefixes, uniformly distributed throughout a and b. Then you would only have to do x * (n/x * n/x) comparisons versus n * n in your case. That's x times fewer comparisons. And you could even imagine repeating the process using the second word, third, etc. in a recursive way.

Now here is the code for it:

reduced.match <- function(a, b) {

   first.word <- function(string) sub("_.*", "", string)

   a.first <- first.word(a)
   b.first <- first.word(b)
   l.first <- unique(c(a.first, b.first))
   a.first <- factor(a.first, l.first)
   b.first <- factor(b.first, l.first)
   a.split <- split(a, a.first)
   b.split <- split(b, b.first)
   a.idx.split <- split(seq_along(a), a.first)
   b.idx.split <- split(seq_along(b), b.first)

   unsorted.matches <-
     Map(function(a, b, i) lapply(a, function(x) i[grep(x, b, fixed = TRUE)]),
         a.split, b.split, b.idx.split, USE.NAMES = FALSE)

   sorted.matches <-
     unlist(unsorted.matches, recursive = FALSE)[
       match(seq_along(a), unlist(a.idx.split))]

   return(sorted.matches)
}

# sample data
set.seed(123)
n <- 10000
words <- paste0(LETTERS, LETTERS, LETTERS)
a <- paste(sample(words[-1], n, TRUE),
           sample(words, n, TRUE), sep = "_")
b <- paste(sample(words[-2], n, TRUE),
           sample(words, n, TRUE), sep = "_")

# testing
identical(reduced.match(a, b), lapply(a, grep, b, fixed = TRUE))
# [1] TRUE

# benchmarks
system.time(reduced.match(a, b))
#    user  system elapsed 
#   0.187   0.000   0.187 
system.time(lapply(a, grep, b, fixed = TRUE))
#    user  system elapsed 
#   2.915   0.002   2.920 

Answer 3


If a and b are sorted (and a unique) and one is interested in exact matches at the beginning of the string, then the following C code will usually be relatively efficient (something on the order of length(a) + length(b) string comparisons?). The R wrapper makes sure the C code and R user get appropriate data.

f3 <- local({
    library(inline)
    .amatch <- cfunction(c(a="character", b="character"),
             includes="#include <string.h>", '
         int len_a = Rf_length(a), len_b = Rf_length(b);
         SEXP ans = PROTECT(allocVector(INTSXP, len_b));
         memset(INTEGER(ans), 0, sizeof(int) * len_b);
         int cmp, i = 0, j = 0;
         while (i < len_a) {
             const char *ap = CHAR(STRING_ELT(a, i));
             while (j < len_b) {
                 cmp = strncmp(ap, CHAR(STRING_ELT(b, j)), strlen(ap));
                 if (cmp > 0) {
                     j += 1;
                 } else break;
             }
             if (j == len_b)
                 break;
             if (cmp == 0)
                 INTEGER(ans)[j++] = i + 1;
             else if (cmp < 0) i += 1;
         }
         UNPROTECT(1);
         return(ans);')

    function(a, b) {
        locale = Sys.getlocale("LC_COLLATE")
        if (locale != "C") {
            warning('temporarily trying to set LC_COLLATE to "C"')
            Sys.setlocale("LC_COLLATE", "C")
            on.exit(Sys.setlocale("LC_COLLATE", locale))
        }
        a0 <- a
        lvls <- unique(a)
        a <- sort(lvls)
        o <- order(b)
        idx <- .amatch(a, b[o])[order(o)]
        f <- factor(a[idx[idx != 0]], levels=lvls)
        split(which(idx != 0), f)[a0]
    }
})

In comparison with this semi-friendly grep

f0 <- function(a, b) {
    a0 <- a
    a <- unique(a)
    names(a) <- a
    lapply(a, grep, b, fixed=TRUE)[a0]
}

that allows for (but doesn't pay too much of a price for) duplicate 'a' values the timings for @flodel's data set are

> microbenchmark(f0(a, b), f3(a, b), times=5)
Unit: milliseconds
     expr       min        lq    median        uq       max neval
 f0(a, b) 431.03595 431.45211 432.59346 433.96036 434.87550     5
 f3(a, b)  15.70972  15.75976  15.93179  16.05184  16.06767     5

Unfortunately, this simple algorithm fails when one element is a prefix of another

> str(f0(c("a", "ab"), "abc"))
List of 2
 $ : chr "abc"
 $ : chr "abc"
> str(f3(c("a", "ab"), "abc"))
List of 2
 $ : chr "abc"
 $ : chr(0) 

Contrary to a comment, for this data set (the random number seed needs to be specified for reproducibility)

set.seed(123)
categ <- c("Control", "Gr", "Or", "PMT", "P450")
genes <- paste(categ, rep(1:40, each=length(categ)), sep="_")
a0 <- paste0(genes, "_", rep(1:50, each=length(genes)), "_")
b0 <- paste0(a0, "1")
ite <- 50
lg <- 1000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]

f3() returns the same values as grep

> identical(unname(f3(a, b)), lapply(a, grep, b, fixed=TRUE))
[1] TRUE

The algorithms f0 and f3 have been modified to return indexes in a named list.

Answer 4


I tested out on my own data the different solutions proposed by @flodel and @Sven Hohenstein (Note that @Martin Morgan's method cannot be tested for the moment as it doesn't support when elements of a that are prefix of other elements of a).

IMPORTANT NOTE: altough all methods give the same result in my specific case, remind that they all have their own way, and thus can give different results depending on the structure of the data

Here is a quick summary (the results are shown below):

  1. In my tests, length(a) and length(b) are set to 200 or 400 and 2,000 or 10,000 respectively
  2. there is only a single match of each value of a in b
  3. the best method really depends of the problem and all deserves to be tested for each specific cases
  4. pmatch always performs very well (notably for small length of vectors a and b, say less than 100 and 1,000 respectively - not shown below),
  5. sapply(a, grep, b, fixed=T) and reduced.match (flodel's method) functions always perform better than sapply(a, grep, b)) and sapply(paste0("^", a), grep, b).

Here is the reproductible code along with the results of the tests

# set up the data set
library(microbenchmark)
categ <- c("Control", "Gr", "Or", "PMT", "P450")
genes <- paste(categ, rep(1:40, each=length(categ)), sep="_")
a0 <- paste(genes, "_", rep(1:50, each=length(genes)), "_", sep="")
b0 <- paste (a0, "1", sep="")

# length(a)==200 & length(b)==2,000
ite <- 200
lg <- 2000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]

microbenchmark(as.vector(sapply(a, grep, b)),                 # original
               as.vector(sapply(paste0("^", a), grep, b)),  # @flodel 1
               as.vector(sapply(a, grep, b, fixed = TRUE)), # Sven Hohenstein
               unlist(reduced.match(a, b)), # @ flodel 2
#~               f3(a, b), @Martin Morgan
               pmatch(a, b))

Unit: milliseconds
                                        expr        min         lq     median
               as.vector(sapply(a, grep, b)) 188.810585 189.256705 189.827765
  as.vector(sapply(paste0("^", a), grep, b)) 157.600510 158.113507 158.560619
 as.vector(sapply(a, grep, b, fixed = TRUE))  23.954520  24.109275  24.269991
                 unlist(reduced.match(a, b))   7.999203   8.087931   8.140260
                                pmatch(a, b)   7.459394   7.489923   7.586329
         uq        max neval
 191.412879 222.131220   100
 160.129008 186.695822   100
  25.923741  26.380578   100
   8.237207  10.063783   100
   7.637560   7.888938   100


# length(a)==400 & length(b)==2,000
ite <- 400
lg <- 2000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]

microbenchmark(as.vector(sapply(a, grep, b)),                 # original
               as.vector(sapply(paste0("^", a), grep, b)),  # @flodel 1
               as.vector(sapply(a, grep, b, fixed = TRUE)), # Sven Hohenstein
               unlist(reduced.match(a, b)), # @ flodel 2
#~               f3(a, b), @Martin Morgan
               pmatch(a, b))

Unit: milliseconds
                                        expr       min        lq    median
               as.vector(sapply(a, grep, b)) 376.85638 379.58441 380.46107
  as.vector(sapply(paste0("^", a), grep, b)) 314.38333 316.79849 318.33426
 as.vector(sapply(a, grep, b, fixed = TRUE))  49.56848  51.54113  51.90420
                 unlist(reduced.match(a, b))  13.31185  13.44923  13.57679
                                pmatch(a, b)  15.15788  15.24773  15.36917
        uq       max neval
 383.26959 415.23281   100
 320.92588 346.66234   100
  52.02379  81.65053   100
  15.56503  16.83750   100
  15.45680  17.58592   100


# length(a)==200 & length(b)==10,000
ite <- 200
lg <- 10000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]

microbenchmark(as.vector(sapply(a, grep, b)),                 # original
               as.vector(sapply(paste0("^", a), grep, b)),  # @flodel 1
               as.vector(sapply(a, grep, b, fixed = TRUE)), # Sven Hohenstein
               unlist(reduced.match(a, b)), # @ flodel 2
#~               f3(a, b), @Martin Morgan
               pmatch(a, b))

Unit: milliseconds
                                        expr       min        lq    median
               as.vector(sapply(a, grep, b)) 975.34831 978.55579 981.56864
  as.vector(sapply(paste0("^", a), grep, b)) 808.79299 811.64919 814.16552
 as.vector(sapply(a, grep, b, fixed = TRUE)) 119.64240 120.41718 120.73548
                 unlist(reduced.match(a, b))  34.23893  34.56048  36.23506
                                pmatch(a, b)  37.57552  37.82128  38.01727
        uq        max neval
 986.17827 1061.89808   100
 824.41931  854.26298   100
 121.20605  151.43524   100
  36.57896   43.33285   100
  38.21910   40.87238   100



# length(a)==400 & length(b)==10500
ite <- 400
lg <- 10000
b <- b0[1:lg]
a <- (a0[1:lg])[sample(seq(lg), ite)]

microbenchmark(as.vector(sapply(a, grep, b)),                 # original
               as.vector(sapply(paste0("^", a), grep, b)),  # @flodel 1
               as.vector(sapply(a, grep, b, fixed = TRUE)), # Sven Hohenstein
               unlist(reduced.match(a, b)), # @ flodel 2
#~               f3(a, b), @Martin Morgan
               pmatch(a, b))

Unit: milliseconds
                                        expr        min         lq     median
               as.vector(sapply(a, grep, b)) 1977.69564 2003.73443 2028.72239
  as.vector(sapply(paste0("^", a), grep, b)) 1637.46903 1659.96661 1677.21706
 as.vector(sapply(a, grep, b, fixed = TRUE))  236.81745  238.62842  239.67875
                 unlist(reduced.match(a, b))   57.18344   59.09308   59.48678
                                pmatch(a, b)   75.03812   75.40420   75.60641
         uq        max neval
 2076.45628 2223.94624   100
 1708.86306 1905.16534   100
  241.12830  283.23043   100
   59.76167   88.71846   100
   75.99034   90.62689   100